Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu3+ phosphors and ceramics

نویسندگان

  • Matas Janulevicius
  • Paulius Marmokas
  • Martynas Misevicius
  • Julija Grigorjevaite
  • Lina Mikoliunaite
  • Simas Sakirzanovas
  • Arturas Katelnikovas
چکیده

A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu(3+) phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu(3+) showed quantum yields up to 85%, what is suitable for commercial application. Temperature dependent emission spectra revealed that heavily Eu(3+) doped phosphors possess stable emission up to 400 K and lose half of the efficiency only at 515 K. In addition, ceramic disks of Y2Mo4O15:75%Eu(3+) phosphor with thickness of 0.71 and 0.98 mm were prepared and it turned out that they efficiently convert radiation of 375 and 400 nm LEDs to the red light, whereas combination with 455 nm LED yields purple colour.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of LiCl on the Microstructure and Luminescence Properties of YVO4:Eu3+ and YBO3:Eu3+ Phosphors

In this investigation, Eu3+ doped YVO4 /YBO3 phosphors were synthesized individually by conventional solid state method at 1100 °C under atmosphere condition. Meanwhile, different amounts of LiClwere used as the flux compound to modify the morphology of the phosphor particles and also final luminescence properties. It was concluded that even small amounts of fluxes play a vital role in the grow...

متن کامل

Tunable Luminescence in Sr2MgSi2O7:Tb3+, Eu3+Phosphors Based on Energy Transfer

A series of Tb3+, Eu3+-doped Sr2MgSi2O7 (SMSO) phosphors were synthesized by high temperature solid-state reaction. X-ray diffraction (XRD) patterns, Rietveld refinement, photoluminescence spectra (PL), and luminescence decay curves were utilized to characterize each sample's properties. Intense green emission due to Tb3+ 5D4→7F5 transition was observed in the Tb3+ single-doped SMSO sample, and...

متن کامل

Effects of the Concentration of Eu3+ Ions and Synthesizing Temperature on the Luminescence Properties of Sr2-xEuxZnMoO6 Phosphors

The effect of Eu2O3 concentration on the luminescence properties of double perovskite (cubic) Sr2−xEuxZnMoO6 phosphors was thoroughly investigated using different synthesizing temperatures. Phosphors with the composition Sr2−xEuxZnMoO6, where Eu2O3 was substituted for SrO and x was changed from 0 to 0.12, were synthesized by the solid-state method at temperatures of 900–1200 ◦C, respectively. A...

متن کامل

Eu3+-doped Bi4Si3O12 red phosphor for solid state lighting: microwave synthesis, characterization, photoluminescence properties and thermal quenching mechanisms

Europium-doped bismuth silicate (Bi4Si3O12) phosphor has been prepared by microwave irradiation method and its crystal structure is determined using Rietveld method. As-prepared phosphor consists of spherical, monodispersed particles with few agglomeration, high crystallinity, and narrow grain size distribution. The phosphor can be efficiently excited in the wavelength range of 260-400 nm, whic...

متن کامل

Color-tunable properties of Eu3+- and Dy3+-codoped Y2O3 phosphor particles

Rare-earth phosphors are commonly used in display panels, security printing, and fluorescent lamps, and have potential applications in lasers and bioimaging. In the present study, Eu3+- and Dy3+-codoped uniform-shaped Y2O3 submicron particles were prepared using the urea homogeneous precipitation method. The structure and morphology of the resulting particles were characterized by X-ray diffrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016